
liteFS-NAND is a high 
performance UNIX-like embedded 
file system with a full POSIX and 
ANSI C compliant application 
program interface. Supports 
dynamic creation and deletion of 
files, directories, and links with 
read and write capability. Not a 
static ROM-image file system.

Guaranteed file system integrity 
across unexpected shutdowns. 
Only data written since the last 
synchronizing operation (fsync(), 
fflush(), etc.) can be lost. Closed 
files, directory structures, and files 
open for reading are never at risk.

Complete wear leveling, both erase 
and read wear. Erase wear-leveling 
prevents early device failure by 
spreading erase cycles evenly 
across all erasable blocks. Read-
wear leveling avoids bit errors due 
to repetitively reading the same 
flash location. When a read-count 
threshold is reached, the affected 
data is copied to a new location, 
refreshing its voltage margins.

Bit errors are corrected when pages 
are read from flash. When the 
number of corrected bits exceeds 
a threshold, the affected data is 
automatically copied to another 
block. This is another protection 
against data loss due to read-wear 
causing bit errors that exceed the 
ECC strength.

Supports background garbage 
collection, to reclaim dirty flash 
sectors during idle periods or by a 
low priority task. Otherwise, block 
erasures are performed just-in-time.

Manages bad blocks, both initial 
bad blocks and those that fail during 
operation. Recovery is performed 
without user intervention. Once 
detected, bad blocks are neither 
programmed nor erased.

liteFS-NAND™ FLASH FILE SYSTEM
FOR SPANSION S34ML/S34MS NAND FLASH MEMORY

HIGHLIGHTS

• Reliable, Re-entrant Embedded 
File System

• POSIX and Standard C API

• Guaranteed Recovery from 
Unexpected Powerloss

• Use of NAND Flash Memory is 
Invisible to Applications

• Dynamic Creation and Deletion of 
Files, Directories, and Links

• Performs Complete Wear-Leveling 
and Bad Block Management

• Supports Multiple Volumes of 
Unlimited Size

• Licensed as Royalty-Free Source 
Code

• Portable to Virtually any RTOS and 
Toolchain

• Includes Sample Applications and 
Test Program

Blunk Microsystems has been 

providing leading edge embedded 

software since 1995, focusing on 

high-performance systems using 

32-bit processors.

 Blunk M
icrosystem

s liteFS-N
AN

D™
 

w
w

w.blunkm
icro

.com

Supports the POSIX “self”, 
“group”, and “other” file access 
protections, allowing some accesses 
to be restricted to privileged tasks.

Caches both user data and file 
system metadata for a configurable 
fixed RAM footprint that performs 
well with all volume sizes, up to 
and including Terabytes.

Optional task-based buffering 
provides constant streaming rates in 
spite of intermittent halts in device 
throughput due to program or erase 
delays, by either reading-ahead or 
writing-behind. Enabled by an open() 
flag, this buffering is otherwise 
transparent to the application.

Optimized drivers take advantage 
of S34ML/S34MS special features, 
such as cache operations, special 
read for copy back, and multi-plane 
mode. SW ECC included. Available 
Verilog for HW ECC.

Other features: Per-task Current 
Working Directory support. Use 
with RTOS or in polled mode. 
>= 242 character file names. Full 
100% ANSI C source code. One-
year of technical support.

On ARM9 Test System:



Streaming Read Speed 10.7 MB/s avg

Best-Case Streaming Write Speed1 8.4 MB/s avg

Worst-Case Streaming Write Speed2 5.6 MB/s avg

Mount/Initialization Time 0.86 sec avg

Expected Utilization3 86.8%

1. Newly formatted or cleaned volume
2. Dirty sectors, no garbage collection
3. Volume with >= 128 erasable blocks

Application Program Interface includes:
int access(const char *path, int amode);
int chdir(const char *path);
int chmod(const char *path, mode_t mode);
int chown(const char *path, uid_t owner, 
gid_t group);

void clearerr(FILE* stream);
int close(int fid);
int closedir(DIR *dirp);
int dup(int fid);
int dup2(int fid, int fid2);
int fclose(FILE *stream);
int fcntl(int fid, int cmd, ...);
FILE *fdopen(int fid, const char *mode);
int feof(FILE *stream);
int ferror(FILE *stream);
int fflush(FILE *stream);
int fgetc(FILE *stream);
int fgetpos(FILE *stream, fpos_t *pos);
char *fgets(char *s, int n, FILE *stream);
int fileno(FILE *stream);
FILE *fopen(const char *filename, const 
char *mode);

int format(char *path);
int fprintf(FILE *stream, const char 
*format, ...);

int fputc(int c, FILE *stream);
int fputs(const char *string, FILE 
*stream);

size_t fread(void *ptr, size_t size, 
size_t nmemb, FILE *stream);

FILE *freopen(const char *filename, const 
char *mode, FILE *stream);

int fscanf(FILE *stream, const char 
*format, ...);

int fseek(FILE *stream, long offset, int 
mode);

int fsetpos(FILE *stream, const fpos_t 
*pos);

int fstat(int fid, struct stat *buf);
int fsync(int fid);
long ftell(FILE *stream);
int ftruncate(int fid, off_t length);
size_t fwrite(const void *ptr, size_t 
size, size_t nmemb, FILE *stream);

Licensing Terms
liteFS-NAND may only be distributed as fully linked executable code. $5K license limits distribution to 
10,000 units and use to one site or three programmers. $5K upgrade removes unit, site, and seat limitations.

AVAILABLE COMPONENTS

TargetXFS
 High performance UNIX-like flash-

friendly file system. Configurable 
fixed RAM footprint. Performs well 
with all volume sizes, up to and 
including Terabytes.

TargetFTL-NDM
 Flash Translation Layer for NAND 

memory. Performs wear-leveling 
and virtual-to-physical page 
mapping using advanced 2nd 
generation cached algorithm. 
Configurable fixed RAM footprint.

TargetNDM
 Smart bad block manager, supports 

multiple partitions per device and 
bulk pre-programming using the 
“Skip Bad Block” method.

TargetFTL-NOR
 Flash Translation Layer for NOR 

memory. Performs wear-leveling. 
Adaptively selects virtual-to-
physical page mapping algorithm 
based on volume size. Configurable 
fixed RAM footprint.

TargetFAT
 High performance, widely used, 

robust DOS-compatible file system 
with support for NAND, NOR, and 
SPI flash and removable cards.

Blunk’s products include the industry’s 
most extensive line of embedded file 
systems, an IPv6 Ready TCP/IP stack, 
embedded web server, RTOS, board 
support packages, and an IDE with 
advanced kernel awareness.

int getc(FILE *stream);
int getchar(void);
char *getcwd(char *buf, size_t 
size);

char *gets(char *s);
int isatty(int fid);
int link(const char *existing, 
const char *new);

off_t lseek(int fid, off_t offset, 
int whence);

int mkdir(const char *path, mode_t 
mode);

int mount(char *path);
int open(const char *path, int 
oflag, ...);

DIR *opendir(const char *dirname);
void perror(const char *s);
int printf(const char *format, 
...);

int putc(int c, FILE *stream);
int putchar(int c);
int puts(const char *s);
int read(int fid, void *buf, 
unsigned int nbyte);

struct dirent *readdir(DIR *dirp);
int remove(const char *filename);
int rename(const char *old, const 
char *new);

void rewind(FILE *stream);
void rewinddir(DIR *dirp);
int rmdir(const char *path);
int scanf(const char *format, 
...);

void setbuf(FILE *stream, char 
*buf);

int setvbuf(FILE *stream, char 
*buf, int mode, size_t size);

int stat(const char *path, struct 
stat *buf);

void sync(void);
FILE *tmpfile(void);
char *tmpnam(char *s);
int truncate(const char *path, 
off_t length);

int ungetc(int c, FILE *stream);
int unlink(const char *path);
int unmount(char *path);
int utime(const char *path, const 
struct utimbuf *times);

int vfprintf(FILE *stream, const 
char *format, va_list arg);

int vprintf(const char *format, 
va_list arg);

int vstat(const char *path, union 
vstat *buf);

int write(int fid, const void *buf, 
unsigned int nbyte);

Blunk Microsystems, LLC
6576 Leyland Park Drive
San Jose, CA 95120-4558
Tel: (408) 323-1758
sales@blunkmicro.com


