
1

2

2.1

ECC Usage with NAND Flash
SkyHigh has introduced SLC NAND flash products with endurance features comparable with or better than
other existing solutions in the market. The SkyHigh NAND flash product offers up to 100,000 Write/Erase
cycles with1-bit ECC for 4x nm products and 4 bits ECC for 3x nm products.

It is important to note that since the SkyHigh NAND flash supports the Copy back function, some important
considerations have to be taken into account by the host in order to avoid any possible accumulation of single bit
errors. The host should make sure

to implement either of the following scenarios:

Readout of data to compute ECC (and modify data if needed) before writing it back. The data from the source
page can be read out by the host in order to compute error detection. Before copying back data to an
alternate device page, the host may perform data correction if needed. Since the data to be written is still in
the page register, the host is only required to upload the corrected bytes using the “Change Write Column”/
”Random Data Input” command,

making the sequence faster.

Implement an ECC scheme that exceeds the minimum required ECC.

On the other hand, in order to ensure that the data is stored properly over the life of the NAND flash device, it is
highly recommended that the following additional precautions be

taken:

Always check status after executing Write, Erase and Copyback operations.

Implement bad-block management, garbage collection and wear-leveling algorithms.

Most Commonly Used ECC Algorithms
This section provides details of

the three most commonly used ECC algorithms.

Hamming Algorithm

Reed-Solomon Algorithm

Bose-Chaudhuri-Hocquenghem (BCH) algorithm

The Hamming Algorithm
The Hamming algorithm is relatively straightforward and easy to be implemented in software or hardware. The
limitation of Hamming algorithm is its limited error correction abilities. Hamming code is able to correct single bit
errors and detect two bits errors. For NAND flash, the Hamming algorithm for ECC computation can be used in the
case where the host system performs a Read for Copy Back function and makes all necessary bit corrections prior
to writing it back, as explained in the previous section. A Hamming code is usually defined as (2n-1, 2n-n-1), where:

n = the number of overhead bits

2n-1 = the block size

2n-n-1 = the number of data bits in the block

All Hamming codes can detect two errors and correct one error. Common Hamming code sizes are (7, 4), (15,
11), and (31, 26). Meaning in a 7-bit block only 4 bits are data, the other 3 bits are correction code; the same goes
for (15,11) and (31,26).

For example, a NAND flash with 2 kB pages that uses a Hamming code algorithm may look like Figure 1.

AN99200

AN99200 discusses the possible ECC schemes and algorithms that can be implemented in systems using SkyHigh SLC
NAND flash products.

What Types of ECC Should Be Used on Flash Memory?

www.skyhighmemory.com Document Number: 001-99200 Rev. *H Page 1 of 4

http://www.cypress.com

What Types of ECC Should Be Used on Flash Memory?

Figure 1. NAND Storage of Hamming Code

In this configuration the Hamming code requires 3 bytes of ECC information for each 512-bytes sector, or 12 bytes
(96 bits) of ECC encoding information is required per 2 kB page.

2.2 The Reed-Solomon Algorithm
The Reed-Solomon algorithm is often used on outer encoding while convolutional code is used on inner encoding
(The inner code takes the result of the pre-coding operation and generates a sequence of encoding symbols.
Each encoding symbol is the XOR of a randomly chosen set of symbols from the pre-code output). The
convolutional code allows the correction of widely scattered errors but is not able to correct highly concentrated
errors. The Reed-Solomon algorithm is often used in NAND flash memory interfaces. Reed-Solomon codes are
often used to handle NAND flash bit-flipping phenomenon. The Reed-Solomon Algorithm is therefore widely used
for NAND and in other mass data storage devices. The Reed-Solomon encoder uses Galois Field arithmetic
operations to add parity symbols. Parameters are listed below:

 n = the number of code symbols

 s = gives the size of symbols (s-bit symbols). n=2s-1

 t = number of correctable errors, 2*t is the number of parity check symbols

 k = number of message symbols (k=n-2t)

A Reed-Solomon code is specified as RS(n,k) with S-bit symbols.

The decode process takes several stages to get error location and correct the error. The first decoding stage is
syndrome computation; this stage transfers symbols to data syndrome. The decoder tells if errors are detected at
this stage. After that, the algorithm computes error polynomial based on syndromes in the finite Galois field.
Following stages find the roots of error polynomial to locate errors and correct them.

Example: A popular Reed-Solomon code is RS (255, 223) with 8-bit symbols. Each code word contains 255 code
word bytes, of which 223 bytes are data and 32 bytes are parity. For this code:

n=255, k =223, s=8

2t=32, t=16

The decoder can correct any 16 symbol errors in the code word: i.e. errors up to 16 bits anywhere in the code
word can be automatically corrected.

n= k+2t = 2s-1

Data (k) Parity (2t)

52 spare bytes
not used by
ECC module

1st 512 bytes 2nd 512 bytes 3rd 512 bytes 4th 512 bytes

Spare
Area

Bytes
2,049
 to
2,100

Byte 2,101

Byte 2,102

Byte 2,103

Byte 2,105

Byte 2,104

Byte 2,107

Byte 2,106

Byte 2,108

Byte 2,109

Byte 2,110

Byte 2,111

Byte 2,112

ECC for 1st
512 bytes

ECC for 2nd
512 bytes

ECC for 3rd
512 bytes

ECC for 4th
512 bytes

Flash page = 2,112 bytes

www.skyhighmemory.com Document Number: 001-99200 Rev. *H Page 2 of 4

What Types of ECC Should Be Used on Flash Memory?

2.3 The BCH Algorithm
Hamming code provides the easiest hardware or software implementation; but it only corrects single bit errors.
Reed-Solomon algorithm provides more robust error correction ability; but requires a large amount of system
resources (CPU cycles or logic cells) to implement. Bose-Chaudhuri-Hocquenghem (BCH) algorithm is becoming
popular because of its improved efficiency over Reed-Solomon algorithm. BCH code is a large class of multiple
errors correcting codes. One advantage of BCH is that both highly concentrated and widely scattered errors are
detected. Another advantage is that the encoding and decoding techniques are relatively simple compared to
Reed-Solomon code. BCH codes belong to the class of linear block codes, to be more specific, the subclass of
cyclic codes.

A block code consists of a set of vectors with N elements, where the vectors are called code word and N is called
the length of the code word; q symbols are the elements of a code word. If the elements consist of the two
symbols 1 and 0, the code is a binary code. A block code maps k information bit into a code word with length of N,
and the ratio r = k/N is defined to be the rate of the code. As stated before, the elements of a code word are
selected from an alphabet of q symbols. Codes are constructed from fields with q elements. In coding, q is usually
a finite number, so the field is a finite field or a so called Galois field.

The main difference between Reed-Solomon and binary BCH is the underlying structures. Reed-Solomon
algorithm is symbol-based and BCH algorithm is binary.

Reed-Solomon algorithm (Symbol base code)

Symbol 1 Symbol 2 Symbol 3 Symbol 4 Symbol 5

Symbol length = 4; code length = 5 symbols

BCH algorithm (binary base code)

Symbol length = 1; code length = 20 symbols

3 Conclusion
Hamming based block codes are the most commonly used ECC for SLC NAND. Hamming codes are relatively
straightforward and simple to be implemented in either software or hardware. The disadvantage of Hamming
codes is its limited error correction capabilities, with two bit errors detection and only one bit error correction.
Therefore, it is mainly used in SLC NAND flash applications.

Reed-Solomon and BCH are able to handle multiple errors. Both codes are powerful and able to handle both
random and burst errors. Reed-Solomon code is a subset of the BCH. However, BCH is simpler than Reed-
Solomon to decode and implement. On the other hand, Reed-Solomon code is more suitable for concatenated
codes.

www.skyhighmemory.com Document Number: 001-99200 Rev. *H Page 3 of 4

What Types of ECC Should Be Used on Flash Memory?

Document History Page

Document Title: AN99200 - What Types of ECC Should Be Used on Flash Memory?
Document Number: 001-99200

ECN No.Rev. Orig. of
Change

Submission
Date Description of Change

Initial version11/27/2007––**

Updated with references to MS NAND flash03/20/2011––*A

Updated to refer to NAND products in general08/30/2011––*B

Updated in Cypress template10/21/2015MSWI4978573*C

Updated sections 2.2 and 2.308/05/2016MNAD5219601*D
Updated template

Updated logo and Copyright.07/10/2017AESATMP85807182*E

Updated template08/30/2018MNAD6295927*F

Fixed alignment for labels in09/17/2018YOQI6311826*G Section 2.3: “The BCH Algorithm,” on page 3

*H MNAD 05/29/2019 Updated to SkyHigh format

www.skyhighmemory.com Document Number: 001-99200 Rev. *H Page 4 of 4

	1 ECC Usage with NAND Flash
	2 Most Commonly Used ECC Algorithms
	2.1 The Hamming Algorithm
	2.2 The Reed-Solomon Algorithm
	2.3 The BCH Algorithm

	3 Conclusion
	Document History Page

